Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Indian J Pathol Microbiol ; 2022 May; 65(1): 291-299
Article | IMSEAR | ID: sea-223292

ABSTRACT

Electron microscopy (EM) has a substantial role in the diagnosis of skeletal muscle disorders. The ultrastructural changes can be observed in muscle fibers and other components of the muscle tissue. EM serves as a confirmatory tool where the diagnosis is already established by enzyme histochemistry staining. Although it is indispensable in the diagnosis of rare forms of congenital myopathies not appreciated by light microscope, such as cylindrical spiral myopathy, zebra body myopathy, fingerprint body myopathy, and intranuclear rod myopathy, in cases not subjected to histochemical staining, it is required for definitive diagnosis in certain groups of muscle disorders, which includes congenital myopathies, metabolic myopathies in particular mitochondrial myopathies and glycogenosis, and in vacuolar myopathies. It does not have diagnostic implications in muscular dystrophies and neurogenic disorders. In the recent past, despite the availability of advanced diagnostic techniques, electron microscopy continues to play a vital role in the diagnosis of skeletal muscle disorders. This review gives an account of ultrastructural features of skeletal muscle disorders, the role of EM in the diagnosis, and its limitations.

2.
Indian J Pathol Microbiol ; 2022 May; 65(1): 277-290
Article | IMSEAR | ID: sea-223291

ABSTRACT

Metabolic myopathies are a diverse group of genetic disorders that result in impaired energy production. They are individually rare and several have received the 'orphan disorder' status. However, collectively they constitute a relatively common group of disorders that affect not only the skeletal muscle but also the heart, liver, and brain among others. Mitochondrial disorders, with a frequency of 1/8000 population, are the commonest cause of metabolic myopathies. Three main groups that cause metabolic myopathy are glycogen storage disorders (GSD), fatty acid oxidation defects (FAOD), and mitochondrial myopathies. Clinically, patients present with varied ages at onset and neuromuscular features. While newborns and infants typically present with hypotonia and multisystem involvement chiefly affecting the liver, heart, kidney, and brain, patients with onset later in life present with exercise intolerance with or without progressive muscle weakness and myoglobinuria. In general, GSDs result in high-intensity exercise intolerance while, FAODs, and mitochondrial myopathies predominantly manifest during endurance-type activity, fasting, or metabolically stressful conditions. Evaluation of these patients comprises a meticulous clinical examination and a battery of investigations which includes- exercise stress testing, metabolic and biochemical screening, electrophysiological studies, neuro-imaging, muscle biopsy, and molecular genetics. Accurate and early detection of metabolic myopathies allows timely counseling to prevent metabolic crises and helps in therapeutic interventions. This review summarizes the clinical features, diagnostic tests, pathological features, treatment and presents an algorithm to diagnose these three main groups of disorders.

3.
Indian J Pathol Microbiol ; 2022 May; 65(1): 233-240
Article | IMSEAR | ID: sea-223285

ABSTRACT

Histopathological analysis of muscle biopsy is a prerequisite in the evaluation of neuromuscular disorders, particularly inflammatory myopathies, metabolic myopathies, congenital myopathies, muscular dystrophies and differentiating myopathies and neurogenic disorders with overlapping clinically features. It not only provides useful information that helps in the diagnosis but also treatment and management. Fundamental skills and basic knowledge regarding handling, processing and analyzing a muscle biopsy are required in any specialized or a general pathology lab supporting neuromuscular clinical services. Care during transport of the muscle biopsy, sample receipt in the laboratory and grossing is very important. Standard operating procedure should be followed for the preanalytical steps (freezing and cryomicrotomy), routine and special staining (enzyme and non enzymatic) and immunohistochemistry. A well organized neuromuscular laboratory with good quality management system is necessary for the practice of myopathology. This article gives an overview of establishing such a laboratory.

SELECTION OF CITATIONS
SEARCH DETAIL